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Liq u id-Va pou r Coexistence Curves 
from a Model Equation of State 
N. H. MARCH, M. P. TOSI" and R .  G. CHAPMAN 
Theoretical Chemistry Department. University of Oxford. 
1 South Parks Road. Oxford OX1 3TG. England. 

(Received 1 March 1988) 

Using a model equation of statc proposed by Chapman and March, which is sufficiently 
general to contain the models of van der Waals and Dieterici, the thermodynamics of the 
coexistence curve is set up. The requirement that the critical exponent is less than f is 
shown to require a specific non-analytic behaviour of a function appearing in the model 
equation of state. In turn this provides a constraint having the nature of a relation 
between average density of liquid and vapour and temperature, transcending rectilinear 
diameters. Comparison between theory and experiment is made to the fluid alkali Cs and 
for some molecular fluids. 

Key Words: Critical exponent; non-analyticity ; rectilinear diameter. 

1 INTRODUCTION 

Considerable understanding now exists of the liquid-vapour coexis- 
tence curve very near to the critical point.' It is known that mean field 
theories such as van der Waals, while qualitatively useful, fail to 
describe the critical region in a quantitative manner. In particular, the 
order parameter p L - p G ,  with p L  and pG the liquid and vapour 
densities respectively, varies along the coexistence curve according to a 
critical exponent f l , such that 

(1.1) p L  - pc = constant(K - T)fl 

* Permanent address: Department of Physics, University of Trieste, Italy. 
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196 N .  H. MARCH, M. P. TOSI AND R. G. CHAPMAN 

with T, the critical temperature. The value of b is known to be 
numerically near to $ from theory and experiment.2 Van der Waals 
theory, on the other hand, yields 

Here, while we add nothing new relating to critical exponents, we 
wish to investigate the way in which the liquid-vapour coexistence 
curve can be characterized over the whole range of density and 
temperature. This we shall do by invoking solely thermodynamics and 
phenomenology but, we stress, supplemented by the important knowl- 
edge that /? in Eq. (1.1) is very near to 5. 

In Section 2, we shall therefore set up the theory of the liquid-vapour 
coexistence curve, using a model equation of state proposed by 
Chapman and Marcha3 This was set up specifically to embrace both the 
van der Waals and the Dieterici equations of state.4 An essential 
ingredient in the phenomenology presented below is to insist that b = 4 
and not '2 as for van der Waals and Dieterici models. Then, in Section 3, 
in the light of this discussion, experimental data for a number of systems 
will be analyzed; in particular for fluid Cs5 and for C2H,6. Section 4 
consists of a summary of the main conclusions and points out directions 
for further studies. 

= $. 

2 LIQUID-VAPOUR COEXISTENCE CURVE FROM 
MODEL EQUATION OF STATE 

The object of this section is to study the properties of the rather general 
equation of state3: 

Here fl and f 2  are left general for the moment, while p* = p i p ,  etc.; ie 
thermodynamic variables are scaled with the appropriate critical 
values. Finally, Z ,  is the compressibility ratio p,/p,k,T,, while a is a 
constant. 

From this Eq. (2.1), using p = p2(dF/dp), with F the Helmholtz free 
energy per particle, and the chemical potential p = F + p/p, one finds 
the equilibrium equations 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
3
6
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



LIQUID-VAPOUR COEXISTENCE CURVES 197 

which comes from the equality of the pressures in the two phases and 

T* In ~- = T*[F,( T*, p ; )  - F,( T*, p g ) ]  PE 
PZ 

+ Z,CFI(T*, PZ) - F,(T*, PE)1 (2.3) 
from the equality of the chemical potentials. Here the quantities F ,  and 
F ,  are defined by integrals on the isotherms as 

and 

p* dp* P*f2(T*, P * )  
F~v*, p*> = - J p* { 1 - .’p” I}. (2.5) 1 - ap* 

To make these somewhat abstract equations concrete, we summarize in 
the Appendix explicit results for the cases of van der Waals and 
Dieterici equations of state. 

Drawing on the examples in the Appendix, it is straightforward for 
these cases to eliminate T* and obtain a relationship between p,(T*) 
and p,(T*) along the coexistence curve. This is then a way of presenting 
experimental data; it will be touched on briefly again in Section 3. 

2.1 

It will be useful next to construct from Eq. (2.1) the pressure on the 
coexistence curve as the average of the (equal) pressures in the liquid 
and in the gas. This “symmetrized” pressure, denoted by p s ,  can then be 
conveniently written in terms of the average of pL( T )  and pc( T )  and of 
the order parameter p L  - p o ,  which we denote respectively by 5 and y~ 

through 

Pressure on the Coexistence Curve 

The result is 
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198 N. H. MARCH, M. P. TOSI AND R. G. CHAPMAN 

We proceed now to use the knowledge that fl = f by expanding 
Eq. (2.7) around the point q = 0. Since p s  is an even function of q, it 
might appear that this expansion should be solely as a series in 1’. It is 
readily verified from the Appendix that this is true both for van der 
Waals and Dieterici examples. The important point to be made is that 
this leads inevitably to fl = in Eq. ( l . l ) ,  in disagreement with 
experiment.’ 

Therefore, the simplest possible assumption to be made is that any 
acceptable equation of state must lead to zero coefficient in the term of 
order q’. Evidently then, a non-analytic term (corresponding to f i  2: $) 
must be invoked in the q expansion; we shall argue below that this non- 
analyticity first enters pT(<,  q )  at order 1 ~ 1 . ~  

To be quite specific, let us expand Eq. (2.7) around q = 0, assuming 
that j2  has a Taylor expansion around q = 0, and that the non- 
analyticity enters solely through fi. We stress that this is an assump- 
tion: the motivation for it, however, is to note that the second square 
bracket involving jz  in Eq. (2.7) must be odd in q. Therefore, all that 
need be added is that 

SCfi(T*, 5 + 1yI) + .fi(T*, 5 - ;?)I = f ,o(T*,  5 )  + .f1*(T*, 5)r’ 
+f13v*, 5)1qi3 + ... (2.8) 

Inserting these assumptions for ,fl and ,fz into Eq. (2 .7)  we are led to 
the small q expansion of the “symmetrized” pressure as 

(2.9) 
where 

Here f . ,  is again a function of T* and 5, the notation being for the 
“coefficients” in the q expansions of f l  and .fz. As to models we note 
that provided fi(5 + i q )  - fl({ - i q )  as a function of q has a Fourier 
transform with inverse power decay in the transformed variable y, 
starting with a power y p 6  at sufficiently large y, then the JqI3  non- 
analyticity follows in leading order. 

As emphasized above, any acceptable equation of state must lead to 
P2(T*,  5 )  = 0; a result which clearly yields: 

p L  +-A! = g(T/T,). 
2PC 

(2.11) 
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LIQUID VAPOUR COEXISTENCE CURVES 199 

The simplest non-trivial form of the function g corresponds to the 
so-called law of rectilinear diameters. This, however, is known not to be 
valid for the heavy fluid alkali metals from the experiments of Jungst et 

To press this a little further, the form of Eq. (2.10), though involving 
as yet unknown functions, is already suggestive of a generalization of 
the law of rectilinear diameters if it is assumed that the fnm’s are not 
functions of temperature. 

a1.5 

3 COMPARISON WITH EXPERIMENT FOR FLUID METAL 
Cs AND FOR SOME MOLECULAR FLUIDS 

Here we shall take advantage of the availability of recent data on the 
fluid alkali metal C S , ~  and on the molecular fluid C2H4,6 to make 
contact between the above discussion and experiment. 

Figure 1 shows a conventional plot of the coexistence curves in the 
( T ,  p )  plane. Besides the two fluids referred to already, data for Ne7 has 
been added, together with the representation of the coexistence curve 
proposed by Guggenheim? and given explicitly in Eqs (4.1) and (4.2) 
below. The latter gives an excellent fit of the data for Ne, but there are 
marked deviations from this fit for both Cs and C,H,. The van der 

70.01 0 
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Figure 1 Liquid vapour coexistence curves. 0 Neon; +Ethylene; -Caesium. For 
comparison with the experimental data the following models are shown: - ~ - Guggen: 
heim formulae (4.1) and (4.2); - - - Van der Waals; - - - - - - - ~ - Dieterici. 
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Figure 2 Order parameter q = pz - pE versus mean density 5 = g(pt -k &). Labelling 
of curves is identical to that in Figure 1. 

Waals and Dieterici models fail to account for the data, as is already 
known. 

We have also explored the plot of p,(T) versus pG(T)  referred to in 
Section 2, and though a cubic relation of the Guggenheim form (4.3) is a 
reasonable fit of the data, deviations are again apparent for Cs, though 
this is a less sensitive plot of differences in data than the other plots 
explored. Therefore we shall not reproduce the p L  versus pG plot here. 

Finally, in Figure 2, the order parameter u] = pL - p G  has been 
plotted against the mean density (pL + p,)/2 as also proposed in 
Section 2. This does seem a more illuminating plot; the same curves are 
shown as in Figure 1 in these different coordinates. The fluid metal is 
plainly very different from both Ne and C,H,; we return to this point 
briefly below. 

4 DISCUSSION AND SUMMARY 

In this section, we shall first pursue a little furth r the discussi n f th 
coexistence curve in thermodynamic and/or phenomenological terms, 
and then turn to enquire what might be the microscopic origin of the 
non-analytic effects discussed earlier. 

First of all, it is worth reiterating that the description of the 
coexistence curve, by elimination of the temperature, as a relation 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
3
6
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



LIQUID-VAPOUR COEXISTENCE CURVES 20 1 

between pL and pG, might eventually be best treated in terms of a 
differential equation. Specifically, a second-order differential equation 
is attractive since, in addition to the critical point boundary condition 
that q = 0 at t = 1 ,  one could then build in, say, the density of the liquid 
at the triple point as the second boundary condition. 

To illustrate this, we note that while Eqs (A5) and (A12) give the pL 
versus pG relation for van der Waals and Dieterici equations of state 
respectively, it is more fruitful to start from Guggenheim’s empirical 
representation4 for molecular fluids, already used in Figures 1 and 2, 
namely 

5 = 1 + -  1 - -  
4 3 (  3 

and 

(4.2) 

this latter Eq. (4.2) contrasting with the van der Waals result q = 
4(1 - T/T,)’” (see Appendix). Eliminating T between Eqs (4.1) and 
Eq. (4.2) yields 

(4.3) 5 = 1 + -5.- 3 
243q . 

This is readily shown to satisfy the second-order differential equation 
for q in terms of t :  

This non-linear form, while undoubtedly oversimplified, displays at 
least some of the structure we expect to appear in a definitive theory of 
the coexistence curve. 

Turning to microscopic aspects, one does not have far to seek for 
reasons why a discussion like that of Osman and Silbert,’ closely 
related to that of van der Waals, becomes inappropriate in the 
immediate vicinity of the critical point. The reason we focus on here is 
the use of c(r) = -4(r) /kBT,  with c(r)  the Ornstein-Zernike direct pair 
correlation function and 4 ( r )  the pair potential. While this asymptotic 
form is valid near the triple point, it breaks down as the critical point is 
approached since eventually the range of the correlations exceeds the 
range of the forces. Any equation of state which is describing the 
coexistence curve realistically must give due attention to such particle 
correlations. Though different from this discussion, earlier work has 
referred to three-body forces as responsible for the shape of the 
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202 N.  H. MARCH, M. P. TOSI A N D  R.  G. CHAPMAN 

coexistence curve near the critical point. Also relevant in the present 
context is the study of Lekner and Henderson' on the connection 
between correlations in the interface and the coexistence curve. 

Thus far, the paper has focussed solely on theory appropriate to 
neutral fluids; eg the condensed rare gases and molecular fluids like 
C2H,. We want to add here a different line of argument which we 
believe is especially appropriate to expanded fluid metals. This is to 
emphasize the need to consider carefully, in any definitive theory, the 
nature of the interface between bulk liquid and vapour phases because 
of charge transfer across the interface. In particular, in an alkali metal 
with positive ions and electrons, an interfacial dipole layer will result 
and this will contribute to the equilibrium conditions on the pressure 
and the chemical potential. To attempt to make this concrete in an 
admittedly oversimplified example, let us consider at this point the one- 
component plasma. Charge transfer in this model creates a " Maxwell" 
pressure which balances a difference between the bulk thermodynamic 
pressures in phases at different densities. Similarly a difference in bulk 
thermodynamic chemical potentials can be balanced by a drop in the 
electrostatic potential through the interface." 

In summary, what has been demonstrated here, from a model 
equation of state of sufficient generality to embrace van der Waals and 
Dieterici models, is that insistence that p < requires a definite relation 
between T/T,  and the mean density ( p L  + pG) /2 .  This, we interpret in its 
most elementary form as the origin of the (approximate) law of 
rectilinear diameters. 

On this point of rectilinear diameters, it is worth referring again to 
the fact that such behaviour will inevitably occur for analytic equations 
of state near the critical point. Thus, from the Appendix, it follows that 
both van der Waals and Dieterici models give + ( p i  + p : )  = 1 + : t  + 
... where t = 1 - T*, though they differ in giving ) ( p ,  - p G )  = 2t1I2 
and f i t ' ' '  respectively. The occurrence of a term t'-' seems to be 
supported by experiment, though the amplitude of this term is particu- 
larly large for Cs. This arises, of course, from the non-analytic part of 
the Helmholtz energy density, while Goldstein and Ashcroft" have 
related the large amplitude for Cs to the strong state dependence of the 
potential. 
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Appendix Coexistence curves for van der Waals 
and for Dieterici equations of state 

In this Appendix we shall record a complete set of thermodynamic 
formulae for the van der Waals equation of state, as a limiting case of 
the model equation of state treated in the main text. For the equation of 
state of Dieterici, the main results needed to construct the coexistence 
curve will also be given. 

VAN DER WAALS EQUATION 

Relating to the main text, we have the explicit functions: 

f , (T*, P*)  = 3P*2  (‘41) 

.fAT*, P * )  = 1, (A2) 

together with c( = and Z ,  = i .  
The explicit form of the chemical potential is then 

The liquid-vapour equilibrium conditions ,D = constant and p = 
constant then lead to: 

(A4) T* = &P? + P X 3  - P X 3  - P 3  
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and 

Equation (A5) yields the relation between p; and pg which is also 
plotted in Figure 1. 

To complete the results of the van der Waals model, we record the 
“symmetrized” pressure, in units of the critical value, defined by 

In terms of 5 and q this takes the alternative forms 

the last step following from Eq. (A4). As anticipated in the main text, 
this depends on q2;  ie it is analytic at  g = 0. To prove that (3 = i, one 
way is to return to Eq. (A5) and expand around 5 = 1 and q = 0. 

A recent study of Osman and Silbert is also relevant here. They plot 
the coexistence curve for argon : below we indicate the modifications 
that occur using their treatment instead of van der Waals. The equation 
of state underlying the work of Osman and Silbert can be written 

k , T + + K S 2  , 
(1 - 6)3  1 

where the packing fraction 6 is given in terms of the number density p 
and the hard core diameter o as 6 = &rpo3. Writing again the appropri- 
ate equilibrium conditions one finds for the “symmetrized” pressure ps:  

6;(1 + 6, + S;)(l - 6,)3 - Si(1 + 6, + 
~ 

(1 + 6, + SZ>(l - 6 , )3  - (1 + 6, + 6;)(1 - 6,)3- 

(A91 

The same defect of analyticity around the critical point is present in 
Eq. (A9), just as in the van der Waals form (A7). This is reflected in 
Figure 1 of the paper by Osman and Silbert. 

DIETER I CI’S EQU AT1 0 N 

Again making reference to  the main text, one has the explicit forms: 

.fl = 0, .f2 = exp( - 2 p * / T * ) ,  M = + , Z ,  = 2 e - 2 ,  (A10) 
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LIQUID-VAPOUR COEXISTENCE CURVES 205 

The equality of the pressure in the two phases yields first: 

Equating chemical potentials, which is equivalent to Maxwell’s “equal 
areas” construction, and then eliminating T*, yields 

(A 12) __ - 

where 

PE(2 - P 3  
P2(2 - PE)‘ 

o =  

Relation (A12) has also been plotted in Figure 1. 
The reduced symmetrized pressure p$ can again be found as 

“(2 - 4 )  + i q ’ ]  cosh(q/T*) - q sinh(q/T*) 
p,* = T* exp{2(l - </T*)} (2 - t)’ - iq’ 

(A141 
which again is a function of y2.  
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